大创项目推荐 题目:基于机器视觉opencv的手势检测 手势识别 算法 - 深度学习 卷积神经网络 opencv python

文章目录

  • 1 简介
  • 2 传统机器视觉的手势检测
    • 2.1 轮廓检测法
    • 2.2 算法结果
    • 2.3 整体代码实现
      • 2.3.1 算法流程
  • 3 深度学习方法做手势识别
    • 3.1 经典的卷积神经网络
    • 3.2 YOLO系列
    • 3.3 SSD
    • 3.4 实现步骤
      • 3.4.1 数据集
      • 3.4.2 图像预处理
      • 3.4.3 构建卷积神经网络结构
      • 3.4.4 实验训练过程及结果
    • 3.5 关键代码
  • 4 最后

1 简介

🔥 优质竞赛项目系列,今天要分享的是

基于机器视觉opencv的手势检测 手势识别 算法

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 传统机器视觉的手势检测

普通机器视觉手势检测的基本流程如下:

在这里插入图片描述
其中轮廓的提取,多边形拟合曲线的求法,凸包集和凹陷集的求法都是采用opencv中自带的函数。手势数字的识别是利用凸包点以及凹陷点和手部中心点的几何关系,简单的做了下逻辑判别了(可以肯定的是这种方法很烂),具体的做法是先在手部定位出2个中心点坐标,这2个中心点坐标之间的距离阈值由程序设定,其中一个中心点就是利用OpenNI跟踪得到的手部位置。有了这2个中心点的坐标,在程序中就可以分别计算出在这2个中心点坐标上的凸凹点的个数。当然了,这样做的前提是用人在做手势表示数字的同时应该是将手指的方向朝上(因为没有像机器学习那样通过样本来训练,所以使用时条件要苛刻很多)。利用上面求出的4种点的个数(另外程序中还设置了2个辅助计算点的个数,具体见代码部分)和简单的逻辑判断就可以识别出数字0~5了。其它的数字可以依照具体的逻辑去设计(还可以设计出多位数字的识别),只是数字越多设计起来越复杂,因为要考虑到它们之间的干扰性,且这种不通用的设计方法也没有太多的实际意义。

2.1 轮廓检测法

使用 void convexityDefects(InputArray contour, InputArray convexhull,
OutputArray convexityDefects) 方法

该函数的作用是对输入的轮廓contour,凸包集合来检测其轮廓的凸型缺陷,一个凸型缺陷结构体包括4个元素,缺陷起点坐标,缺陷终点坐标,缺陷中离凸包线距离最远的点的坐标,以及此时最远的距离。参数3即其输出的凸型缺陷结构体向量。

其凸型缺陷的示意图如下所示:

在这里插入图片描述
第1个参数虽然写的是contour,字面意思是轮廓,但是本人实验过很多次,发现如果该参数为目标通过轮廓检测得到的原始轮廓的话,则程序运行到onvexityDefects()函数时会报内存错误。因此本程序中采用的不是物体原始的轮廓,而是经过多项式曲线拟合后的轮廓,即多项式曲线,这样程序就会顺利地运行得很好。另外由于在手势识别过程中可能某一帧检测出来的轮廓非常小(由于某种原因),以致于少到只有1个点,这时候如果程序运行到onvexityDefects()函数时就会报如下的错误:

int Mat::checkVector(int _elemChannels, int _depth, bool _requireContinuous) const

{

    return (depth() == _depth || _depth <= 0) &&

        (isContinuous() || !_requireContinuous) &&

        ((dims == 2 && (((rows == 1 || cols == 1) && channels() == _elemChannels) || (cols == _elemChannels))) ||

        (dims == 3 && channels() == 1 && size.p[2] == _elemChannels && (size.p[0] == 1 || size.p[1] == 1) &&

         (isContinuous() || step.p[1] == step.p[2]*size.p[2])))

    ? (int)(total()*channels()/_elemChannels) : -1;

}

该函数源码大概意思就是说对应的Mat矩阵如果其深度,连续性,通道数,行列式满足一定条件的话就返回Mat元素的个数和其通道数的乘积,否则返回-1;而本文是要求其返回值大于3,有得知此处输入多边形曲线(即参数1)的通道数为2,所以还需要求其元素的个数大于1.5,即大于2才满足ptnum

3。简单的说就是用convexityDefects()函数来对多边形曲线进行凹陷检测时,必须要求参数1曲线本身至少有2个点(也不知道这样分析对不对)。因此本人在本次程序convexityDefects()函数前加入了if(Mat(approx_poly_curve).checkVector(2,
CV_32S) > 3)来判断,只有满足该if条件,才会进行后面的凹陷检测。这样程序就不会再出现类似的bug了。

第2个参数一般是由opencv中的函数convexHull()获得的,一般情况下该参数里面存的是凸包集合中的点在多项式曲线点中的位置索引,且该参数以vector的形式存在,因此参数convexhull中其元素的类型为unsigned
int。在本次凹陷点检测函数convexityDefects()里面根据文档,要求该参数为Mat型。因此在使用convexityDefects()的参数2时,一般将vector直接转换Mat型。

参数3是一个含有4个元素的结构体的集合,如果在c++的版本中,该参数可以直接用vector来代替,Vec4i中的4个元素分别表示凹陷曲线段的起始坐标索引,终点坐标索引,离凸包集曲线最远点的坐标索引以及此时的最远距离值,这4个值都是整数。在c版本的opencv中一般不是保存的索引,而是坐标值。

2.2 算法结果

数字“0”的识别结果:
在这里插入图片描述
数字“1”的识别结果

在这里插入图片描述

数字“2”的识别结果
在这里插入图片描述

数字“3”的识别结果:
在这里插入图片描述

数字“4”的识别结果:
在这里插入图片描述

数字“5”的识别结果:
在这里插入图片描述

2.3 整体代码实现

2.3.1 算法流程

学长实现过程和上面的系统流程图类似,大概过程如下:

  • 1. 求出手部的掩膜

  • 2. 求出掩膜的轮廓

  • 3. 求出轮廓的多变形拟合曲线

  • 4. 求出多边形拟合曲线的凸包集,找出凸点

  • 5. 求出多变形拟合曲线的凹陷集,找出凹点

  • 6. 利用上面的凸凹点和手部中心点的几何关系来做简单的数字手势识别

(这里用的是C语言写的,这个代码是学长早期写的,同学们需要的话,学长出一个python版本的)



    #include 
    
    #include "opencv2/highgui/highgui.hpp"
    #include "opencv2/imgproc/imgproc.hpp"
    #include 
    #include "copenni.cpp"
    
    #include 
    
    #define DEPTH_SCALE_FACTOR 255./4096.
    #define ROI_HAND_WIDTH 140
    #define ROI_HAND_HEIGHT 140
    #define MEDIAN_BLUR_K 5
    #define XRES  640
    #define YRES  480
    #define DEPTH_SEGMENT_THRESH 5
    #define MAX_HANDS_COLOR 10
    #define MAX_HANDS_NUMBER  10
    #define HAND_LIKELY_AREA 2000
    #define DELTA_POINT_DISTENCE 25     //手部中心点1和中心点2距离的阈值
    #define SEGMENT_POINT1_DISTANCE 27  //凸点与手部中心点1远近距离的阈值
    #define SEGMENT_POINT2_DISTANCE 30  //凸点与手部中心点2远近距离的阈值
    
    using namespace cv;
    using namespace xn;
    using namespace std;


    int main (int argc, char **argv)
    {
        unsigned int convex_number_above_point1 = 0;
        unsigned int concave_number_above_point1 = 0;
        unsigned int convex_number_above_point2 = 0;
        unsigned int concave_number_above_point2 = 0;
        unsigned int convex_assist_above_point1 = 0;
        unsigned int convex_assist_above_point2 = 0;
        unsigned int point_y1 = 0;
        unsigned int point_y2 = 0;
        int number_result = -1;
        bool recognition_flag = false;  //开始手部数字识别的标志
    
        vector<Scalar> color_array;//采用默认的10种颜色
        {
            color_array.push_back(Scalar(255, 0, 0));
            color_array.push_back(Scalar(0, 255, 0));
            color_array.push_back(Scalar(0, 0, 255));
            color_array.push_back(Scalar(255, 0, 255));
            color_array.push_back(Scalar(255, 255, 0));
            color_array.push_back(Scalar(0, 255, 255));
            color_array.push_back(Scalar(128, 255, 0));
            color_array.push_back(Scalar(0, 128, 255));
            color_array.push_back(Scalar(255, 0, 128));
            color_array.push_back(Scalar(255, 128, 255));
        }
        vector<unsigned int> hand_depth(MAX_HANDS_NUMBER, 0);
        vector<Rect> hands_roi(MAX_HANDS_NUMBER, Rect(XRES/2, YRES/2, ROI_HAND_WIDTH, ROI_HAND_HEIGHT));
    
        namedWindow("color image", CV_WINDOW_AUTOSIZE);
        namedWindow("depth image", CV_WINDOW_AUTOSIZE);
        namedWindow("hand_segment", CV_WINDOW_AUTOSIZE);    //显示分割出来的手的区域
        namedWindow("handrecognition", CV_WINDOW_AUTOSIZE); //显示0~5数字识别的图像
    
        COpenNI openni;
        if(!openni.Initial())
            return 1;
    
        if(!openni.Start())
            return 1;
        while(1) {
            if(!openni.UpdateData()) {
                return 1;
            }
            /*获取并显示色彩图像*/
            Mat color_image_src(openni.image_metadata_.YRes(), openni.image_metadata_.XRes(),
                                CV_8UC3, (char *)openni.image_metadata_.Data());
            Mat color_image;
            cvtColor(color_image_src, color_image, CV_RGB2BGR);
            Mat hand_segment_mask(color_image.size(), CV_8UC1, Scalar::all(0));
    
            for(auto itUser = openni.hand_points_.cbegin(); itUser != openni.hand_points_.cend(); ++itUser) {
    
                point_y1 = itUser->second.Y;
                point_y2 = itUser->second.Y + DELTA_POINT_DISTENCE;
                circle(color_image, Point(itUser->second.X, itUser->second.Y),
                       5, color_array.at(itUser->first % color_array.size()), 3, 8);
    
                /*设置不同手部的深度*/
                hand_depth.at(itUser->first % MAX_HANDS_COLOR) = (unsigned int)(itUser->second.Z* DEPTH_SCALE_FACTOR);//itUser->first会导致程序出现bug
    
                /*设置不同手部的不同感兴趣区域*/
                hands_roi.at(itUser->first % MAX_HANDS_NUMBER) = Rect(itUser->second.X - ROI_HAND_WIDTH/2, itUser->second.Y - ROI_HAND_HEIGHT/2,
                                                   ROI_HAND_WIDTH, ROI_HAND_HEIGHT);
                hands_roi.at(itUser->first % MAX_HANDS_NUMBER).x =  itUser->second.X - ROI_HAND_WIDTH/2;
                hands_roi.at(itUser->first % MAX_HANDS_NUMBER).y =  itUser->second.Y - ROI_HAND_HEIGHT/2;
                hands_roi.at(itUser->first % MAX_HANDS_NUMBER).width = ROI_HAND_WIDTH;
                hands_roi.at(itUser->first % MAX_HANDS_NUMBER).height = ROI_HAND_HEIGHT;
                if(hands_roi.at(itUser->first % MAX_HANDS_NUMBER).x <= 0)
                    hands_roi.at(itUser->first % MAX_HANDS_NUMBER).x  = 0;
                if(hands_roi.at(itUser->first % MAX_HANDS_NUMBER).x > XRES)
                    hands_roi.at(itUser->first % MAX_HANDS_NUMBER).x =  XRES;
                if(hands_roi.at(itUser->first % MAX_HANDS_NUMBER).y <= 0)
                    hands_roi.at(itUser->first % MAX_HANDS_NUMBER).y = 0;
                if(hands_roi.at(itUser->first % MAX_HANDS_NUMBER).y > YRES)
                    hands_roi.at(itUser->first % MAX_HANDS_NUMBER).y =  YRES;
            }
            imshow("color image", color_image);
    
            /*获取并显示深度图像*/
            Mat depth_image_src(openni.depth_metadata_.YRes(), openni.depth_metadata_.XRes(),
                                CV_16UC1, (char *)openni.depth_metadata_.Data());//因为kinect获取到的深度图像实际上是无符号的16位数据
            Mat depth_image;
            depth_image_src.convertTo(depth_image, CV_8U, DEPTH_SCALE_FACTOR);
            imshow("depth image", depth_image);
    
            //取出手的mask部分
            //不管原图像时多少通道的,mask矩阵声明为单通道就ok
            for(auto itUser = openni.hand_points_.cbegin(); itUser != openni.hand_points_.cend(); ++itUser) {
                for(int i = hands_roi.at(itUser->first % MAX_HANDS_NUMBER).x; i < std::min(hands_roi.at(itUser->first % MAX_HANDS_NUMBER).x+hands_roi.at(itUser->first % MAX_HANDS_NUMBER).width, XRES); i++)
                    for(int j = hands_roi.at(itUser->first % MAX_HANDS_NUMBER).y; j < std::min(hands_roi.at(itUser->first % MAX_HANDS_NUMBER).y+hands_roi.at(itUser->first % MAX_HANDS_NUMBER).height, YRES); j++) {
                        hand_segment_mask.at<unsigned char>(j, i) = ((hand_depth.at(itUser->first % MAX_HANDS_NUMBER)-DEPTH_SEGMENT_THRESH) < depth_image.at<unsigned char>(j, i))
                                                                    & ((hand_depth.at(itUser->first % MAX_HANDS_NUMBER)+DEPTH_SEGMENT_THRESH) > depth_image.at<unsigned char>(j,i));
                    }
             }
            medianBlur(hand_segment_mask, hand_segment_mask, MEDIAN_BLUR_K);
            Mat hand_segment(color_image.size(), CV_8UC3);
            color_image.copyTo(hand_segment, hand_segment_mask);
    
            /*对mask图像进行轮廓提取,并在手势识别图像中画出来*/
            std::vector< std::vector<Point> > contours;
            findContours(hand_segment_mask, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);//找出mask图像的轮廓
            Mat hand_recognition_image = Mat::zeros(color_image.rows, color_image.cols, CV_8UC3);
    
            for(int i = 0; i < contours.size(); i++) {  //只有在检测到轮廓时才会去求它的多边形,凸包集,凹陷集
                recognition_flag = true;
                /*找出轮廓图像多边形拟合曲线*/
                Mat contour_mat = Mat(contours[i]);
                if(contourArea(contour_mat) > HAND_LIKELY_AREA) {   //比较有可能像手的区域
                    std::vector<Point> approx_poly_curve;
                    approxPolyDP(contour_mat, approx_poly_curve, 10, true);//找出轮廓的多边形拟合曲线
                    std::vector< std::vector<Point> > approx_poly_curve_debug;
                    approx_poly_curve_debug.push_back(approx_poly_curve);
    
                     drawContours(hand_recognition_image, contours, i, Scalar(255, 0, 0), 1, 8); //画出轮廓
        //            drawContours(hand_recognition_image, approx_poly_curve_debug, 0, Scalar(256, 128, 128), 1, 8); //画出多边形拟合曲线
    
                    /*对求出的多边形拟合曲线求出其凸包集*/
                    vector<int> hull;
                    convexHull(Mat(approx_poly_curve), hull, true);
                    for(int i = 0; i < hull.size(); i++) {
                        circle(hand_recognition_image, approx_poly_curve[hull[i]], 2, Scalar(0, 255, 0), 2, 8);
    
                        /*统计在中心点1以上凸点的个数*/
                        if(approx_poly_curve[hull[i]].y <= point_y1) {
                            /*统计凸点与中心点1的y轴距离*/
                            long dis_point1 = abs(long(point_y1 - approx_poly_curve[hull[i]].y));
                            int dis1 = point_y1 - approx_poly_curve[hull[i]].y;
                            if(dis_point1 > SEGMENT_POINT1_DISTANCE && dis1 >= 0)  {
                                convex_assist_above_point1++;
                            }
                            convex_number_above_point1++;
                        }
    
                        /*统计在中心点2以上凸点的个数*/
                        if(approx_poly_curve[hull[i]].y <= point_y2)    {
                            /*统计凸点与中心点1的y轴距离*/
                            long dis_point2 = abs(long(point_y2 - approx_poly_curve[hull[i]].y));
                            int dis2 = point_y2 - approx_poly_curve[hull[i]].y;
                            if(dis_point2 > SEGMENT_POINT2_DISTANCE && dis2 >= 0)  {
                                convex_assist_above_point2++;
                            }
                            convex_number_above_point2++;
                        }
                    }
    
        //            /*对求出的多边形拟合曲线求出凹陷集*/
                    std::vector<Vec4i> convexity_defects;
                    if(Mat(approx_poly_curve).checkVector(2, CV_32S) > 3)
                        convexityDefects(approx_poly_curve, Mat(hull), convexity_defects);
                    for(int i = 0; i < convexity_defects.size(); i++) {
                        circle(hand_recognition_image, approx_poly_curve[convexity_defects[i][2]] , 2, Scalar(0, 0, 255), 2, 8);
    
                        /*统计在中心点1以上凹陷点的个数*/
                        if(approx_poly_curve[convexity_defects[i][2]].y <= point_y1)
                            concave_number_above_point1++;
    
                        /*统计在中心点2以上凹陷点的个数*/
                        if(approx_poly_curve[convexity_defects[i][2]].y <= point_y2)
                            concave_number_above_point2++;
                    }
                }
            }
    
            /**画出手势的中心点**/
            for(auto itUser = openni.hand_points_.cbegin(); itUser != openni.hand_points_.cend(); ++itUser) {
                circle(hand_recognition_image, Point(itUser->second.X, itUser->second.Y), 3, Scalar(0, 255, 255), 3, 8);
                circle(hand_recognition_image, Point(itUser->second.X, itUser->second.Y + 25), 3, Scalar(255, 0, 255), 3, 8);
            }
    
            /*手势数字0~5的识别*/
            //"0"的识别
            if((convex_assist_above_point1 ==0 && convex_number_above_point2 >= 2 && convex_number_above_point2 <= 3 &&
                    concave_number_above_point2 <= 1 && concave_number_above_point1 <= 1) || (concave_number_above_point1 ==0
                    || concave_number_above_point2 == 0) && recognition_flag == true)
                number_result = 0;
            //"1"的识别
            if(convex_assist_above_point1 ==1 && convex_number_above_point1 >=1  && convex_number_above_point1 <=2 &&
                    convex_number_above_point2 >=2 && convex_assist_above_point2 == 1)
                number_result = 1;
            //"2"的识别
            if(convex_number_above_point1 == 2 && concave_number_above_point1 == 1 && convex_assist_above_point2 == 2
                    /*convex_assist_above_point1 <=1*/ && concave_number_above_point2 == 1)
                number_result = 2;
            //"3"的识别
            if(convex_number_above_point1 == 3 && concave_number_above_point1 <= 3 &&
                    concave_number_above_point1 >=1 && convex_number_above_point2 >= 3 && convex_number_above_point2 <= 4 &&
                    convex_assist_above_point2 == 3)
                number_result = 3;
            //"4"的识别
            if(convex_number_above_point1 == 4 && concave_number_above_point1 <=3 && concave_number_above_point1 >=2 &&
                    convex_number_above_point2 == 4)
                number_result = 4;
            //"5"的识别
            if(convex_number_above_point1 >=4 && convex_number_above_point2 == 5 && concave_number_above_point2 >= 3 &&
                    convex_number_above_point2 >= 4)
                number_result = 5;
            if(number_result !=0 && number_result != 1  && number_result != 2 && number_result != 3 && number_result != 4 && number_result != 5)
                number_result == -1;
    
            /*在手势识别图上显示匹配的数字*/
            std::stringstream number_str;
            number_str << number_result;
            putText(hand_recognition_image, "Match: ", Point(0, 60), 4, 1, Scalar(0, 255, 0), 2, 0 );
            if(number_result == -1)
                putText(hand_recognition_image, " ", Point(120, 60), 4, 2, Scalar(255, 0 ,0), 2, 0);
            else
                putText(hand_recognition_image, number_str.str(), Point(150, 60), 4, 2, Scalar(255, 0 ,0), 2, 0);
    
            imshow("handrecognition", hand_recognition_image);
            imshow("hand_segment", hand_segment);
    
            /*一个循环中对有些变量进行初始化操作*/
            convex_number_above_point1 = 0;
            convex_number_above_point2 = 0;
            concave_number_above_point1 = 0;
            concave_number_above_point2 = 0;
            convex_assist_above_point1 = 0;
            convex_assist_above_point2 = 0;
            number_result = -1;
            recognition_flag = false;
            number_str.clear();
    
            waitKey(20);
        }
    
    }



    #include "copenni.h"
    #include 
    #include 
    #include 
    
    using namespace xn;
    using namespace std;
    
    COpenNI::COpenNI()
    {
    }
    
    COpenNI::~COpenNI()
    {
    }
    
    bool COpenNI::Initial()
    {
        status_ = context_.Init();
        if(CheckError("Context initial failed!")) {
            return false;
        }
    
        context_.SetGlobalMirror(true);//设置镜像
        xmode_.nXRes = 640;
        xmode_.nYRes = 480;
        xmode_.nFPS = 30;
    
        //产生颜色node
        status_ = image_generator_.Create(context_);
        if(CheckError("Create image generator  error!")) {
            return false;
        }
    
        //设置颜色图片输出模式
        status_ = image_generator_.SetMapOutputMode(xmode_);
        if(CheckError("SetMapOutputMdoe error!")) {
            return false;
        }
    
        //产生深度node
        status_ = depth_generator_.Create(context_);
        if(CheckError("Create depth generator  error!")) {
            return false;
        }
    
        //设置深度图片输出模式
        status_ = depth_generator_.SetMapOutputMode(xmode_);
        if(CheckError("SetMapOutputMdoe error!")) {
            return false;
        }
    
        //产生手势node
        status_ = gesture_generator_.Create(context_);
        if(CheckError("Create gesture generator error!")) {
            return false;
        }
    
        /*添加手势识别的种类*/
        gesture_generator_.AddGesture("Wave", NULL);
        gesture_generator_.AddGesture("click", NULL);
        gesture_generator_.AddGesture("RaiseHand", NULL);
        gesture_generator_.AddGesture("MovingHand", NULL);
    
        //产生手部的node
        status_ = hand_generator_.Create(context_);
        if(CheckError("Create hand generaotr error!")) {
            return false;
        }
    
        //产生人体node
        status_ = user_generator_.Create(context_);
        if(CheckError("Create gesturen generator error!")) {
            return false;
        }
    
        //视角校正
        status_ = depth_generator_.GetAlternativeViewPointCap().SetViewPoint(image_generator_);
        if(CheckError("Can't set the alternative view point on depth generator!")) {
            return false;
        }
    
        //设置与手势有关的回调函数
        XnCallbackHandle gesture_cb;
        gesture_generator_.RegisterGestureCallbacks(CBGestureRecognized, CBGestureProgress, this, gesture_cb);
    
        //设置于手部有关的回调函数
        XnCallbackHandle hands_cb;
        hand_generator_.RegisterHandCallbacks(HandCreate, HandUpdate, HandDestroy, this, hands_cb);
    
        //设置有人进入视野的回调函数
        XnCallbackHandle new_user_handle;
        user_generator_.RegisterUserCallbacks(CBNewUser, NULL, NULL, new_user_handle);
        user_generator_.GetSkeletonCap().SetSkeletonProfile(XN_SKEL_PROFILE_ALL);//设定使用所有关节(共15个)
    
        //设置骨骼校正完成的回调函数
        XnCallbackHandle calibration_complete;
        user_generator_.GetSkeletonCap().RegisterToCalibrationComplete(CBCalibrationComplete, this, calibration_complete);
        return true;
    }
    
    bool COpenNI::Start()
    {
        status_ = context_.StartGeneratingAll();
        if(CheckError("Start generating error!")) {
            return false;
        }
        return true;
    }
    
    bool COpenNI::UpdateData()
    {
        status_ = context_.WaitNoneUpdateAll();
        if(CheckError("Update date error!")) {
            return false;
        }
        //获取数据
        image_generator_.GetMetaData(image_metadata_);
        depth_generator_.GetMetaData(depth_metadata_);
    
        return true;
    }
    
    ImageGenerator &COpenNI::getImageGenerator()
    {
        return image_generator_;
    }
    
    DepthGenerator &COpenNI::getDepthGenerator()
    {
        return depth_generator_;
    }
    
    UserGenerator &COpenNI::getUserGenerator()
    {
        return user_generator_;
    }
    
    GestureGenerator &COpenNI::getGestureGenerator()
    {
        return gesture_generator_;
    }
    
    HandsGenerator &COpenNI::getHandGenerator()
    {
        return hand_generator_;
    }
    
    bool COpenNI::CheckError(const char *error)
    {
        if(status_ != XN_STATUS_OK) {
            cerr << error << ": " << xnGetStatusString( status_ ) << endl;
            return true;
        }
        return false;
    }
    
    void COpenNI::CBNewUser(UserGenerator &generator, XnUserID user, void *p_cookie)
    {
        //得到skeleton的capability,并调用RequestCalibration函数设置对新检测到的人进行骨骼校正
        generator.GetSkeletonCap().RequestCalibration(user, true);
    }
    
    void COpenNI::CBCalibrationComplete(SkeletonCapability &skeleton, XnUserID user, XnCalibrationStatus calibration_error, void *p_cookie)
    {
        if(calibration_error == XN_CALIBRATION_STATUS_OK) {
            skeleton.StartTracking(user);//骨骼校正完成后就开始进行人体跟踪了
        }
        else {
            UserGenerator *p_user = (UserGenerator*)p_cookie;
            skeleton.RequestCalibration(user, true);//骨骼校正失败时重新设置对人体骨骼继续进行校正
        }
    }
    
    void COpenNI::CBGestureRecognized(GestureGenerator &generator, const XnChar *strGesture, const XnPoint3D *pIDPosition, const XnPoint3D *pEndPosition, void *pCookie)
    {
        COpenNI *openni = (COpenNI*)pCookie;
        openni->hand_generator_.StartTracking(*pEndPosition);
    }
    
    void COpenNI::CBGestureProgress(GestureGenerator &generator, const XnChar *strGesture, const XnPoint3D *pPosition, XnFloat fProgress, void *pCookie)
    {
    }
    
    void COpenNI::HandCreate(HandsGenerator &rHands, XnUserID xUID, const XnPoint3D *pPosition, XnFloat fTime, void *pCookie)
    {
        COpenNI *openni = (COpenNI*)pCookie;
        XnPoint3D project_pos;
        openni->depth_generator_.ConvertRealWorldToProjective(1, pPosition, &project_pos);
        pair<XnUserID, XnPoint3D> hand_point_pair(xUID, XnPoint3D());//在进行pair类型的定义时,可以将第2个设置为空
        hand_point_pair.second = project_pos;
        openni->hand_points_.insert(hand_point_pair);//将检测到的手部存入map类型的hand_points_中。
    
        pair<XnUserID, vector<XnPoint3D>> hand_track_point(xUID, vector<XnPoint3D>());
        hand_track_point.second.push_back(project_pos);
        openni->hands_track_points_.insert(hand_track_point);
    }
    
    void COpenNI::HandUpdate(HandsGenerator &rHands, XnUserID xUID, const XnPoint3D *pPosition, XnFloat fTime, void *pCookie)
    {
        COpenNI *openni = (COpenNI*)pCookie;
        XnPoint3D project_pos;
        openni->depth_generator_.ConvertRealWorldToProjective(1, pPosition, &project_pos);
        openni->hand_points_.find(xUID)->second = project_pos;
        openni->hands_track_points_.find(xUID)->second.push_back(project_pos);
    }
    
    void COpenNI::HandDestroy(HandsGenerator &rHands, XnUserID xUID, XnFloat fTime, void *pCookie)
    {
        COpenNI *openni = (COpenNI*)pCookie;
        openni->hand_points_.erase(openni->hand_points_.find(xUID));
        openni->hands_track_points_.erase(openni->hands_track_points_.find(xUID ));
    }



3 深度学习方法做手势识别

3.1 经典的卷积神经网络

卷积神经网络的优势就在于它能够从常见的视觉任务中自动学习目 标数据的特征, 然后将这些特征用于某种特定任务的模型。 随着时代的发展,
深度学习也形成了一些经典的卷积神经网络。

3.2 YOLO系列

YOLO 系列的网络模型最早源于 2016 年, 之后几年经过不断改进相继推出YOLOv2、 YOLOv3
等网络,直到今日yoloV5也诞生了,不得不感慨一句,darknet是真的肝。

最具代表性的yolov3的结构

在这里插入图片描述

3.3 SSD

SSD 作为典型的一阶段网络模型, 具有更高的操作性, 端到端的学习模式同样受到众多研究者的喜爱

在这里插入图片描述

3.4 实现步骤

3.4.1 数据集

手势识别的数据集来自于丹成学长实验室,由于中国手势表示3的手势根据地区有略微差异,按照这个数据集的手势训练与测试即可。

  • 图像大小:100*100 像素
  • 颜色空间:RGB 种类:
  • 图片种类:6 种(0,1,2,3,4,5)
  • 每种图片数量:200 张

一共6种手势,每种手势200张图片,共1200张图片(100x100RGB)

在这里插入图片描述

3.4.2 图像预处理

在这里插入图片描述

实际图片处理展示:resize前先高斯模糊,提取边缘后可以根据实际需要增加一次中值滤波去噪:

在这里插入图片描述

3.4.3 构建卷积神经网络结构

使用tensorflow的框架,构建一个简单的网络结构

在这里插入图片描述

在这里插入图片描述

Dropout: 增加鲁棒性帮助正则化和避免过拟合

一个相关的早期使用这种技术的论文((ImageNet Classification with Deep Convolutional Neural
Networks, by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton
(2012).))中启发性的dropout解释是:

因为一个神经元不能依赖其他特定的神经元。因此,不得不去学习随机子集神经元间的鲁棒性的有用连接。换句话说。想象我们的神经元作为要给预测的模型,dropout是一种方式可以确保我们的模型在丢失一个个体线索的情况下保持健壮的模型。在这种情况下,可以说他的作用和L1和L2范式正则化是相同的。都是来减少权重连接,然后增加网络模型在缺失个体连接信息情况下的鲁棒性。在提高神经网络表现方面效果较好。

3.4.4 实验训练过程及结果

经过约4800轮的训练后,loss基本收敛,在0.6左右,在120份的测试样本上的模型准确率能够达到约96%

在这里插入图片描述

在这里插入图片描述

3.5 关键代码


    import tensorflow as tf
    IMAGE_SIZE = 100
    NUM_CHANNELS = 1
    CONV1_SIZE = 4
    CONV1_KERNEL_NUM = 8
    CONV2_SIZE = 2
    CONV2_KERNEL_NUM = 16
    FC_SIZE = 512
    OUTPUT_NODE = 6
    
    def get_weight(shape, regularizer):
    	w = tf.Variable(tf.truncated_normal(shape,stddev=0.1))
    	if regularizer != None: tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w)) 
    	return w
    
    def get_bias(shape): 
    	b = tf.Variable(tf.zeros(shape))  
    	return b
    
    def conv2d(x,w):  
    	return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
    
    def max_pool_8x8(x):  
    	return tf.nn.max_pool(x, ksize=[1, 8, 8, 1], strides=[1, 4, 4, 1], padding='SAME')
    
    def max_pool_4x4(x):  
    	return tf.nn.max_pool(x, ksize=[1, 4, 4, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    def forward(x, train, regularizer):
        
        conv1_w = get_weight([CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_KERNEL_NUM], regularizer) 
        conv1_b = get_bias([CONV1_KERNEL_NUM]) 
        conv1 = conv2d(x, conv1_w) 
        relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_b)) 
        pool1 = max_pool_8x8(relu1) 
    
        conv2_w = get_weight([CONV2_SIZE, CONV2_SIZE, CONV1_KERNEL_NUM, CONV2_KERNEL_NUM],regularizer) 
        conv2_b = get_bias([CONV2_KERNEL_NUM])
        conv2 = conv2d(pool1, conv2_w) 
        relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_b))
        pool2 = max_pool_4x4(relu2)
    
        pool_shape = pool2.get_shape().as_list() 
        nodes = pool_shape[1] * pool_shape[2] * pool_shape[3] 
        reshaped = tf.reshape(pool2, [pool_shape[0], nodes]) 
    
        fc1_w = get_weight([nodes, FC_SIZE], regularizer) 
        fc1_b = get_bias([FC_SIZE]) 
        fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_w) + fc1_b) 
        if train: fc1 = tf.nn.dropout(fc1, 0.5)
    
        fc2_w = get_weight([FC_SIZE, OUTPUT_NODE], regularizer)
        fc2_b = get_bias([OUTPUT_NODE])
        y = tf.matmul(fc1, fc2_w) + fc2_b
        return y 


    import tensorflow as tf
    import numpy as np
    import gesture_forward
    import gesture_backward
    from image_processing import func5,func6
    import cv2
    
    def restore_model(testPicArr):
        with tf.Graph().as_default() as tg:
            
            x = tf.placeholder(tf.float32,[
                1,
                gesture_forward.IMAGE_SIZE,
                gesture_forward.IMAGE_SIZE,
                gesture_forward.NUM_CHANNELS])    
            #y_ = tf.placeholder(tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE])
            y = gesture_forward.forward(x,False,None)
            
            preValue = tf.argmax(y, 1)
    
            variable_averages = tf.train.ExponentialMovingAverage(gesture_backward.MOVING_AVERAGE_DECAY)
            variables_to_restore = variable_averages.variables_to_restore()
            saver = tf.train.Saver(variables_to_restore)
            
            with tf.Session() as sess:
                ckpt = tf.train.get_checkpoint_state(gesture_backward.MODEL_SAVE_PATH)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)
                    #global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] 
                    preValue = sess.run(preValue, feed_dict={x:testPicArr})
                    return preValue
                else:
                    print("No checkpoint file found")
                    return -1


    def application01():
        testNum = input("input the number of test pictures:")
        testNum = int(testNum)
        for i in range(testNum):
            testPic = input("the path of test picture:")
            img = func5(testPic)
            cv2.imwrite(str(i)+'ttt.jpg',img)   
    #        cv2.waitKey(0)
    #        cv2.destroyAllWindows()
            img = img.reshape([1,100,100,1])
            img = img.astype(np.float32)
            img = np.multiply(img, 1.0/255.0)
    #        print(img.shape)
    #        print(type(img))        
            preValue = restore_model(img)
            print ("The prediction number is:", preValue)
    
    def application02():
        
        #vc = cv2.VideoCapture('testVideo.mp4')
        vc = cv2.VideoCapture(0)
        # 设置每秒传输帧数
        fps = vc.get(cv2.CAP_PROP_FPS)
        # 获取视频的大小
        size = (int(vc.get(cv2.CAP_PROP_FRAME_WIDTH)),int(vc.get(cv2.CAP_PROP_FRAME_HEIGHT)))
        # 生成一个空的视频文件
        # 视频编码类型
        # cv2.VideoWriter_fourcc('X','V','I','D') MPEG-4 编码类型
        # cv2.VideoWriter_fourcc('I','4','2','0') YUY编码类型
        # cv2.VideoWriter_fourcc('P','I','M','I') MPEG-1 编码类型
        # cv2.VideoWriter_fourcc('T','H','E','O') Ogg Vorbis类型,文件名为.ogv
        # cv2.VideoWriter_fourcc('F','L','V','1') Flask视频,文件名为.flv
        #vw = cv2.VideoWriter('ges_pro.avi',cv2.VideoWriter_fourcc('X','V','I','D'), fps, size)
        # 读取视频第一帧的内容
        success, frame = vc.read()
    #    rows = frame.shape[0]    
    #    cols = frame.shape[1]
    #    t1 = int((cols-rows)/2)
    #    t2 = int(cols-t1)
    #    M = cv2.getRotationMatrix2D((cols/2,rows/2),90,1)
    #    frame = cv2.warpAffine(frame,M,(cols,rows))
    #    frame = frame[0:rows, t1:t2]
    #    cv2.imshow('sd',frame)
    #    cv2.waitKey(0)
    #    cv2.destroyAllWindows()
        while success:
            
            #90度旋转        
    #        img = cv2.warpAffine(frame,M,(cols,rows))
    #        img = img[0:rows, t1:t2]
            img = func6(frame)
            img = img.reshape([1,100,100,1])
            img = img.astype(np.float32)
            img = np.multiply(img, 1.0/255.0)
            preValue = restore_model(img)
            # 写入视频
            cv2.putText(frame,"Gesture:"+str(preValue),(50,50),cv2.FONT_HERSHEY_PLAIN,2.0,(0,0,255),1)
            #vw.write(frame)
            cv2.imshow('gesture',frame)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
            # 读取视频下一帧的内容
            success, frame = vc.read()
        
        vc.release()
        cv2.destroyAllWindows()    
        print('viedo app over!')


    def main():
        #application01()
        application02()
        
    if __name__ == '__main__':
    	main()	


4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/756948.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS开发:应用完整性校验

简介 为了确保应用的完整性和来源可靠&#xff0c;OpenHarmony需要对应用进行签名和验签。 应用开发阶段&#xff1a; 开发者完成开发并生成安装包后&#xff0c;需要开发者对安装包进行签名&#xff0c;以证明安装包发布到设备的过程中没有被篡改。OpenHarmony的应用完整性校…

【Docker0】网络更改

目录 1. 停止docker服务 2. 关闭docker默认桥接网络接口 3. 从系统删除docker0接口 4. 创建一个名为bridge0的新接口 5. 添加ip地址和子网掩码 6. 启用bridge0接口 7. &#xff08;如果没起来就执行该句&#xff09; 8. 查看ip 1. 停止docker服务 sudo service docker…

SpringBoot: Eureka入门

1. IP列表 公司发展到一定的规模之后&#xff0c;应用拆分是无可避免的。假设我们有2个服务(服务A、服务B)&#xff0c;如果服务A要调用服务B&#xff0c;我们能怎么做呢&#xff1f;最简单的方法是让服务A配置服务B的所有节点的IP&#xff0c;在服务A内部做负载均衡调用服务B…

Linux之进程控制(上)

目录 进程创建 进程终止 进程退出码 进程终止的方式 进程等待 进程等待的方式 status概述 总结 上期我们学习了Linux中进程地址空间的概念&#xff0c;至此进程的所有基本概念已经全部学习完成&#xff0c;今天我们将开始学习进程相关的操作。 进程创建 进程创建其实…

7 个不容忽视的开源安全工具

专业人士选择的第一个工具通常是开源选项,因为它们得到了广泛社区的保证和支持。此代码是支持安全可靠的互联网的基础的一部分。 最近,XZ Utils 等丑闻让用户犹豫不决。开放性是否是攻击的危险载体?还有其他问题在等着他们吗? 辩护者指出,虽然开放性可以让某些攻击变得更…

刷代码随想录有感(120):贪心算法——买卖股票的最佳时机

题干&#xff1a; 代码&#xff1a; class Solution { public:int maxProfit(vector<int>& prices) {int low INT_MAX;int res INT_MIN;for(int i 0; i < prices.size(); i){low min(low, prices[i]);res max(res, prices[i] - low);}return res;} }; 贪心…

在本地和Linux之间传输文件

1.打开本地的cmd窗口 2. 然后按这个链接的说法在cmd中远程连接Linux&#xff08;技术|如何在 Linux 中使用 sFTP 上传或下载文件与文件夹&#xff09; 3. 看这个链接里面的sftp命令进行本地和Linux之间的文件互传 &#xff08;https://www.cnblogs.com/niuben/p/13324099.htm…

动态规划基础练习

我们需要先从数组较大的开始进行处理&#xff0c;每次考察上下左右的&#xff0c;比较当前存储的最大值和转移来的值&#xff0c;哪一个大一点 #define _CRT_SECURE_NO_WARNINGS #include<bits/stdc.h> using namespace std;int n, m; int a[105][105]; int addx[] { 0,…

远程过程调用协议gRPC及在go环境下的使用

1. 远程过程调用协议 1.1 定义 远程过程调用(Remote Procedure Call&#xff0c;PRC是一种进程间通信技术&#xff0c;它使得程序可以像调用本地函数一样调用远程服务器上的函数。RPC 屏蔽了底层的通信细节&#xff0c;让开发者能够更专注于业务逻辑&#xff0c;而无需关心网络…

C语言力扣刷题4——删除链表的倒数第 N 个结点[双指针],只遍历一遍

力扣刷题4——删除链表的倒数第 N 个结点[双指针] 一、博客声明二、题目描述三、解题思路1、思路说明 四、解题代码&#xff08;附注释&#xff09; 一、博客声明 找工作逃不过刷题&#xff0c;为了更好的督促自己学习以及理解力扣大佬们的解题思路&#xff0c;开辟这个系列来记…

“用友审批,兴业付款”,YonSuite让企业资金调拨更高效

随着企业规模的扩大和经营的不断深入&#xff0c;企业的分支机构分布各地&#xff0c;在多银行多账户的资金管理上面临着诸多挑战。传统的资金管理方式往往效率低下、风险较高&#xff0c;难以满足企业快速发展的需求。 为了解决这些痛点&#xff0c;用友网络科技股份有限公司…

MathType2024最新破解版在哪里可以下载?

在当今科技日益发展的时代&#xff0c;我们每个人都可能遇到需要在电子文档、网页或其他平台中输入复杂数学公式的情况。这时&#xff0c;一个强大且易用的数学公式编辑器就成了我们迫切需要的工具。而MathType&#xff0c;作为一款专业、精准的数学公式编辑器&#xff0c;无疑…

Redis为什么设计多个数据库

​关于Redis的知识前面已经介绍过很多了,但有个点没有讲,那就是一个Redis的实例并不是只有一个数据库,一般情况下,默认是Databases 0。 一 内部结构 设计如下: Redis 的源码中定义了 redisDb 结构体来表示单个数据库。这个结构有若干重要字段,比如: dict:该字段存储了…

人生最有力,最棒的十句话!

人生最有力&#xff0c;最棒的十句话 1、允许一切事发生&#xff0c;所有一切发生的事不是你能阻挡了的&#xff0c;你接受&#xff0c;他也发生&#xff0c;你不接受&#xff0c;他也发生&#xff0c;你还不如坦然面对接受现实。 2、你焦虑的时候千万不要躺着啥也不干&#xf…

机器人控制系列教程之关节空间运动控制器搭建(1)

机器人位置控制类型 机器人位置控制分为两种类型&#xff1a; 关节空间运动控制—在这种情况下&#xff0c;机器人的位置输入被指定为一组关节角度或位置的向量&#xff0c;这被称为机器人的关节配置&#xff0c;记作q。控制器跟踪一个参考配置&#xff0c;记作 q r e f q_{re…

2SK241 LTSpice模型及仿真

2SK241是东芝生产的一款NMOS&#xff0c;早已停产&#xff0c;但是在收音机圈子里还是有很多死忠粉&#xff0c;所以在淘宝上也是一堆打磨改标的假货。 言归正传&#xff0c;在矿坛上找到了2SK241的模型&#xff1a; .model M2SK241bottom NMOS(Level1 Rd1 Rs10 Rg50 Kp8mV…

《数据结构与算法基础 by王卓老师》学习笔记——类C语言有关操作补充

1.元素类型说明 2.数组定义 3.C语言的内存动态分配 4..C中的参数传递 5.传值方式 6.传地址方式 例子

CICD持续集成(Jenkins+Git+Gogs)

1.Jenkins Jenkins 是一个开源的、用于构建和自动化软件开发流程的持续集成和交付工具。它提供了一个可扩展的平台&#xff0c;用于构建、测试和部署软件项目。通过使用 Jenkins&#xff0c;开发团队可以实现持续集成和交付&#xff0c;自动化构建和测试过程&#xff0c;提高软…

C++Primer Plus 第十四章代码重用:14.4.7 成员模板

CPrimer Plus 第十四章代码重用 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 例如&#xff1a;CPrimer Plus 第十四章代码重用&#xff1a;14.4.7 成员模板 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如…

【算法训练记录——Day37】

Day37——贪心Ⅴ 1.leetcode_56合并区间 1.leetcode_56合并区间 思路&#xff1a;排序&#xff0c;如果重叠&#xff0c;更新right 为max(right, curVal), 不重叠就加入res,需要单独考虑最后一次&#xff0c;因为每次都是在下一次遍历开始时判断是否加入res&#xff0c;因此 当…